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Abstract

In their numerical investigation of the family of one dimensional mapsf`(x) = 1 − 2|x|`, where` > 2, Diamond et al.
[P. Diamond et al., Physica D 86 (1999) 559–571] have observed the surprising numerical phenomenon that a large fraction
of initial conditions chosen at random eventually wind up at−1, a repelling fixed point. This is a numerical artifact because
the continuous maps are chaotic and almost every (true) trajectory can be shown to be dense in [−1, 1]. The goal of this
paper is to extend and resolve this obvious contradiction. We model the numerical simulation with a randomly selected map.
While they used 27 bit precision in computingf`, we prove for our model that this numerical artifact persists for an arbitrary
high numerical prevision. The fraction of initial points eventually winding up at−1 remains bounded away from 0 for every
numerical precision. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Because of the prevalence of numerical calculations of dynamical systems, it is important to identify special situ-
ations in which numerical simulations yield strikingly incorrect results. Computer simulation of chaotic dynamical
systems can be very different from the real systems. Recently, a rather surprising numerical artifact was identified
by Diamond et al. in two nice papers [1,2]. For the family of maps

f`(x) = 1 − 2|x|`, x ∈ [−1, 1], ` > 2, (1.1)

f` is chaotic, as we will show in the next section. In particular, almost every trajectory is dense in the whole interval.
Diamond et al. numerically investigated trajectories of (1.1) and reported that for an initial point chosen at random
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in (−1, 1), the trajectory has a considerable probability of reaching the point−1. Note that−1 is a repelling fixed
point, so the trajectory remains at−1 thereafter.

Indeed, numerically every trajectory in [−1, 1] is eventually periodic, since there are only finitely many numbers
available to the computer. If a (numerical) trajectory reaches an unstable fixed point (which is−1 in this case), we say
the trajectorycollapses. Note that the numerical trajectory will stay at−1 thereafter. Diamond et al. found that for
an initial point chosen at random in(−1, 1), the probability of collapse is roughly 70% for` approximately 3. This
probability fluctuates wildly as̀ varies, and 70% is an average for` near 3. They use a fixed point representation
of precisionε = 2−27. Apparently, they computef`(x) accurately and then round to the nearest integer of the form
k · 2−27, wherek is an integer. Hence−1 remains a numerical fixed point.

The aim of this paper is to present a computational model for which we can prove that this artifact persists even
if numerical precision is increased arbitrarily.

Indeed, there is a trivial example where collapsing occurs. LetT be the tent map on [0, 1] with slope 2. ThenT is
clearly chaotic and preserves Lebesgue measure on [0, 1]. On the other hand, if numbers have binary representations,
it is easy to see that every numerical trajectory will eventually become 0 (and will of course stay at 0). However,
for tent maps collapsing is unusual in the sense that it disappears when the slope is slightly less than 2; whereas for
f`, where` > 2, the probability is positive.

For high precision calculations, the time to first repeat will be large, and it seems natural to assume that before a
numerical trajectory repeats, it has the same statistics as those of a typical true trajectory. This assumption leads us
to model a numerical simulation off` by a mapping that is randomly selected from the collection of all mappings
defined on a finite set. Similar ideas have also been discussed in several other papers, see, e.g. [1–7].

In developing the model, we need definitions. Given a mapf , we defined thefractionof the iterates of the orbit
(f n(x))∞i=1 lying in a setS by

F(x, S) := lim
n→∞

#{f i(x) ∈ S : 1 ≤ i ≤ n}
n

.

Write N(r, S) := {x : dist(x, S) ≤ r}. Thenatural measure generated by the mapf is defined by

µf (S) := lim
r→0

F(x, N(r, S))

for each closed setS, as long as allx except for a measure zero set gives the same answer.
In the next section we will prove thatf`, ` > 2, the natural measure exists and is absolutely continuous with

respect to the Lebesgue measure, and that the support of the measure is [−1, 1]. For the moment we assume the
existence of natural measure and start describing our model. Letµ be the natural measure.

A computer using fixed precision will have some numberN of points (equally spaced) from−1 to+1. We will
investigate the set of maps on these points subject to the condition that−1 is a fixed point and+1 maps to−1 and as
described below the maps have a probability distribution on them that is determined by the reducedµ. We partition
the interval [−1, 1] with the uniform grid∆N = {x0, x1, . . . , x2N }, wherexk = −1+ k/N . Let p̃k be the measure
(with respect toµ) of the interval of length 1/N centered atxk.

The “induced” probability distribution on∆N is defined as follows:

pk := p̃k

1 − p̃0
, for 0 < k ≤ 2N. (1.2)

Notice that
∑2N

k=1pk = 1. Hence Eq. (1.2) gives a probability distribution.
Let TN,` be the collection ofT : ∆N → ∆N such thatT (−1) = −1 andT (+1) = −1. We choose a mapT

from TN,` (` determines the probability distribution) at random according to the following:
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P {T (xi) = xj } = pj , for 0 < i < 2N and 0< j ≤ 2N. (1.3)

Eq. (1.3) gives a probability depending on`.
This model is motivated by fixed precision arithmetic. For floating point computation, the floating numbers are

denser at 0 than anywhere else, and this does not significantly affect computational results for this problem.

Theorem 1.1. Let ` > 2. Letx be an initial point chosen randomly from∆N with uniform distribution, and letT
be a mapping chosen randomly fromTN,` accordingly to Eq.(1.3). WritePcollapse for the probability that there
exists ann such thatT n(x) = −1. ThenPcollapse depends only onN and` and

liminf
N→∞

Pcollapse > 0.

The distribution of initial points is not important as long as it is induced by a probability measure that is an equiv-
alent Lebesgue measure. Thus to simplify our proof of Theorem 1.1 we are able to consider the initial distribution
to be given by Eq. (1.2) instead.

When applied to numerical simulation, liminfN→∞Pcollapse stands for a lower bound of the probability with
which an initial condition chosen at random eventually maps to the fixed point−1. Theorem 1.1 means that for
` > 2 this probability is bounded away from zero.

Diamond et al. also use randomly selected mappings in their analysis, but they use a different and simpler statistical
model (see also [8] for their recent discussion), which assumes the distribution on∆N is uniform except at 1, and the
weight at 1 is adjusted to yield the agreement betweenPcollapse obtained from theoretical derivation and numerical
simulation. The advantage of our model is that it is based on the actual properties of the invariant density (which
we establish here). Furthermore, we can estimate howPcollapse depends oǹ (Eq. (3.23)). In particular,

1, P lower
collapse(l = 2 + δ) ∼ δ1/2, (1.4)

2, P lower
collapse(l → ∞) = 1, (1.5)

whereP lower
collapse is our lower bound forPcollapse computed from Eq. (3.23). The quantityPcollapse can be used as

an a priori estimate of how much statistical information is distorted in numerical simulations.

2. Invariant measure

Despite all the numerical evidence that many chaotic systems have a natural measure, its existence can be
mathematically justified only for a few special cases [9–16]. Fortunately, when` ≥ 2 the mapf` belongs to such
cases. The goal of this section is to verify the existence of the natural measure and analyze this measure quantitatively.
Indeed, we will prove the following proposition.

Proposition 2.1. For f`, ` > 2,there exists a unique invariant probability measureµ which is absolutely continuous
with respect to Lebesgue measure. The densityρ(x) for this measure is continous on(−1, 1) and bounded away
from 0. For each`; the following limits exist:

α1 := lim
x→1

ρ(x)(1 − x)1−1/`, (2.1)

α0 := lim
x→−1

ρ(x)(1 + x)1−1/` (2.2)

and they satisfy

α0 := α1/((2`)1/` − 1). (2.3)
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To prove Proposition 2.1, we first observe that its Schwarzian derivativeSf` is negative, where

Sf`(x) := f ′′
`

′(x)

f ′
`(x)

− 3

2

(
f ′′

`
′(x)

f ′
`(x)

)2

.

Next, sincef 2
` (0) = −1, and−1 is an unstable fixed point,|(f n

` )′(f`(c))| grows exponentially inn. From the
following proposition,f` has a natural measureµ andµ is absolutely continuous with respect to Lebesgue measure.
Let ρ be its density.

Proposition 2.2(see [17], Theorem V 4.1).Letf : [−1, 1] → [−1, 1] be a unimodal(i.e.f has only one critical
point) C3 map with negative Schwarzian derivative and assume that the critical pointc of f is of finite order̀ ≥ 1,
i.e., assume that there are constantsO1, O2 such that

O1|x − c|`−1 ≤ |f ′(x)| ≤ O2|x − c|`−1.

Furthermore, assume that the growth-rate of|(f n)′(f (c))| is so fast that

∞∑
n=1

|(fn)
′(f (c))|−1/` < ∞. (2.4)

Thenf has a unique invariant probability measureµ that is absolutely continuous with respect to Lebesgue measure.
Furthermore, there exists a constantG such that

µ(A) ≤ G|A|1/`,

for any measurable setA ⊂ (−1, 1) where|A| is the Lebesgue measure ofA.

Note thatf` satisfies Eq. (2.4) since(f n)′(f`(c)) grows exponentially asn → ∞. We need in addition to show
that the invariant densityρ is continuous. To this end we first define a first return mapR`. Note thatf`(x) has two
fixed points:−1 andz, where 0< z < 1. For eachx ∈ [−z, z] \ {0}, there existsix ∈ N such thatf i

` (x) /∈ [−z, z]

for i = 1, . . . , ix − 1 andf
ix
` (x) ∈ [−z, z]. DefineR`(x) := f

ix
` (x). The domain ofR` (i.e., [−z, z] \ {0}) can be

divided into maximal intervalsJj , 1 ≤ j < ∞, on which the return time (i.e.,ix) is a constant which is denoted by
k(j). The following proposition says thatR` has a continuous invariant densityλ and forx ∈ J , in addition,ρ(x)

is equal toλ(x) multiplied by a constant.

Proposition 2.3(see [17], pp. 363–365).There exists anR`-invariant probability measurem which is absolutely
continuous with respect to Lebesgue measure. Letλ(x) be its density(defined only onJ ). Then the following
properties hold.
1. λ(x) is Lipschitz continuous.
2. λ(x) is uniformly bounded away from zero.
3. Forx ∈ J , thef`-invariant densityρ is given byρ(x) = λ(x)/Γ , whereΓ := ∑∞

j=1k(j)m(Jj ) < ∞.

Proof of Proposition 2.1. From Proposition 2.3,ρ(x) is Lipschitz continuous onJ . Let y > 0 and−y be the
inverse imagesf −1

` (x) for x ∈ (−1, 1). The Perron–Frobenius operatorΦ applied toρ yields

Φ(ρ)(x) = ρ(−y)

|f ′
`(−y)| + ρ(y)

|f ′
`(y)| = ρ(−y) + ρ(y)

|f ′
`(y)| . (2.5)

But ρ = Φ(ρ) sinceρ is invariant. Hence we have

ρ(x) = ρ(−y) + ρ(y)

|f ′
`(y)| = ρ(−y) + ρ(y)

2`|y|`−1
. (2.6)



22 G. Yuan, J.A. Yorke / Physica D 136 (2000) 18–30

If x ∈ [z, 1), theny ∈ J . (Recall thatJ = [−z, z].) Notice thatρ is continuous onJ . Thus Eq. (2.6) impliesρ
is continuous atz, i.e. we need to show that the limits ofρ at z from both sides, denoted byρ(z−) andρ(z+),
respectively, are equal, or in other words, we need to prove that

ρ(z−) = d[ρ(z−) + ρ(−z+)], (2.7)

whered := 1/|f ′
`(z)| andρ(−z+) denotes the right limit ofρ at−z.

Let −w−1 be the unique point inf −1(−z) ∩ (−1, 0). For 1 ≤ i < ∞, let −w−(i+1) be the unique point in
f −1(−w−i ) ∩ (−1, 0), and letz−(i+1) be the unique point inf −1(w−i ) ∩ (−1, 0). For 2≤ i < ∞, it is clear that
z−i ∈ J , f i(z−i ) = −z, and the return time equals 2 on(z−2, z) and is constant on each(z−(i+1), z−i ). Applying
Eq. (2.6) repeatedly yields

ρ(z−) = d2ρ(z−) + d2ρ(−z+) +
∞∑
i=2

ρ(z−i )

|(f i+1
` )′(z−i )|

+
∞∑
i=2

ρ(−z−i )

|(f i+1
` )′(−z−i )|

(2.8)

and

ρ(−z+) =
∞∑
i=2

ρ(z−i )

|(f i
` )′(z−i )|

+
∞∑
i=2

ρ(−z−i )

|(f i
` )′(−z−i )|

. (2.9)

Since|(f i+1
` )′(−z−i )| = |(f i+1

` )′(z−i )| = |f ′(f i
` (z−i )) · (f i

` )′(z−i )| = |(f i
` )′(z−i )|/d, Eq. (2.8) can be rewritten

as

ρ(z−) = d2ρ(z−) + d2ρ(−z+) + d

[ ∞∑
i=2

ρ(z−i )

|(f i
` )′(z−i )|

+
∞∑
i=2

ρ(−z−i )

|(f i
` )′(−z−i )|

]
.

Substituting (2.9) into the above equation, we get

ρ(z−) = d2ρ(z−) + d2ρ(−z+) + dρ(−z+).

Solving forρ(z−) yields

ρ(z−) = d

1 − d
ρ(−z+),

which implies (2.7).
The continuity ofρ on (−1, −z] can be proved as follows. For eachx ∈ [−w−1, −z], Eq. (2.6) yields

ρ(f`(x)) = ρ(x) + ρ(−x)

|f ′
`(x)| . (2.10)

We can solveρ(x) from (2.10) and get

ρ(x) = |f ′
`(x)|ρ(f`(x)) − ρ(−x).

Since bothf`(x) and−x are contained in [−z, 1), the above equation implies thatρ is continuous atx, and that the
limits of ρ at−z from both sides coincide. Thereforeρ is continuous on [−w−1, 1). Repeating previous arguments,
and noticing that limi→∞ − w−i = −1, we conclude thatρ is continuous on(−1, 1).

In the following we prove that the limits in (2.1) and (2.2) exist and Eq. (2.3) holds. We first notice that Eq. (2.6)
implies that the limit in (2.1) exists, since

α1 = lim
y→0

ρ(−y) + ρ(y)

2`|y|`−1
· (2|y|`)1−1/` = 21−1/`ρ(0)

`
.
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To prove the limit in (2.2) exists it suffices to show thatρ(x)(1 + x)1−1/` is bounded on(−1, −z], and that the
“limsup” and “liminf” coincide.

Givenx ∈ (−1, −z], let y−1 := y, where as defined earliery > 0 and−y are the inverse images off −1
` (x). For

1 ≤ i < ∞, let y−(i+1) be the unique point inf −1
` (−y−i ) ∩ (0, 1). Thenf i

` (y−i ) = x. Applying (2.6) repeatedly
yields

ρ(x) =
∞∑
i=1

ρ(y−i )

|(f i
` )′(y−i )|

.

Let D := sup0≤y<1ρ(y)(1 − y)1−1/`. Sinceρ is continuous on [0, 1) and the limit in (2.1) exists,D is a real
number. Also notice thatf` has negative Schwarzian derivative, so it has bounded distortion [17, Theorem IV 1.2]
on (−1, −z]. Thus there exists a constantE > 0 such that

|(f`)
′(−z)|i ≤

(
1 + x

1 − y−i

)
=
(

f i
` (−y−i ) − (−1)

−y−i − (−1)

)
≤ E|(f i

` )′(y−i )|. (2.11)

Thus

ρ(x)(1 + x)1−1/` =
∞∑
i=1

ρ(y−i )

|(f i
` )′(y−i )|

(1 + x)1−1/` =
∞∑
i=1

ρ(y−i )(1 − y−i )
1−1/`

|(f i
` )′(y−i )|

·
(

1 + x

1 − y−i

)1−1/`

≤
∞∑
i=1

D{E|(f i
` )′(y−i )|}1−1/`

|(f i
` )′(y−i )|

≤ DE1−1/`
∞∑
i=1

|f ′
`(z)|−i/` <

DE1−1/`

|(f i
` )(z)|1/` − 1

< ∞.

Henceρ(x)(1 + x)1−1/` is bounded in(−1, −z].
From Eq. (2.6), we have

limsup
x→−1

ρ(x)(1 + x)1−1/`

= limsup
y→1

(ρ(−y) + ρ(y))(2 − 2y`)1−1/`

2`y`−1
= limsup

y→1

(ρ(−y) + ρ(y))(2`)1−1/`(1 − y)1−1/`

2`y`−1

= (2`)−1/`

(
limsup

y→1
ρ(−y)(1 − y)1−1/` + α1

)
= (2`)−1/`

(
limsup

y→1
ρ(x)(1 + x)1−1/` + α1

)
.

Solving for the “limsup” yields

limsup
x→−1

ρ(x)(1 + x)1−1/` = α1

(2`)1/` − 1
.

Similarly the “liminf” in (2.2) is the same; hence the limit exists, and the relation (2.3) holds. �

Remark. Keller [18] (see also[17, TheoremV 3.2]) has proved that for a unimodal map with one non-flat crit-
ical point (i.e., it is of finite order) and negative Schwarzian derivative, the existence of an absolutely continu-
ous probability measure implies that Lyapunov exponents are positive for almost all initial points. In this sense,
f` (` > 2) is chaotic.
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3. Proof of main results

In this section we prove Theorem 1.1 after preliminary lemmas. We apply the methods introduced heuristically
by Grebogi et al. [3], but we use them for a rigorous argument to estimatePcollapse quantitatively.

Indeed,Pcollapse can be equivalently defined in terms of probabilities of sequences without reference to a space
of maps. For a sequeneσ = (xij )

n
j=1 of points in∆N \ {−1}, let xis denote the first term (if it exists) for which

eitherxis equals an earlierxij or xis = 1. In the latter case, we sayσ is collapsing, ands is thecollapsing time;
in the first case, we sayσ is repetitive, ands is therepeating time. There are sequences that are neither collapsing
nor repetitive, but their length is at most 2N − 1, since there are only 2N − 1 different points in∆N \ {−1, 1}.
DefineP ′

collapse as the probability that an (infinite) sequence chosen at random (using the probabilities in (1.2)) is
collapsing, that is,xij = 1 occurs before the first repeat.

The definitionsPcollapse andP ′
collapse are equivalent. This is because if(xij )

n
j=1 is a sequence in{x1, . . . , x2N−1}

such thatxi1 6= · · · 6= xin , i.e., no pair of indices in{i1, . . . , in} are equal, then the probability of choosing this
sequence is the same as the probability of obtaining this sequence as a trajectory of a randomly chosen map (using the
probabilities in (1.3)). Therefore, a collapsing sequence(xij )

s
j=1 with collapsing times is chosen with a probability

same as that with which the orbit(xij )
s
j=1 of a mapT is chosen fromTN,`.

We first give a heuristic argument before proving Theorem 1.1 in detail. Letσ = (xij )
∞
j=1 be a sequence chosen

at random. Since the probability of picking 1 is equal top2N,Pcollapse is roughly equal top2N times the average
length of a maximal sequence that is neither collapsing nor repetitive. The chance of repetition is small for short
sequences and gets larger for longer sequences. Define

Proc(n) := P {(xij )
n
j=1 has no 1’s and no repeats}, (3.1)

Stop(n) := 1 − Proc(n). (3.2)

Then the average length of maximal sequences mentioned earlier is approximately equal to the cufoff ofNstop

whereStop(Nstop) is not negligible. Indeed, we will see in Eq. (3.6) that this cutoff is approximately equal to the
minimum ofp−1

2N and〈p〉−1 and〈p〉−1/2, where〈p〉 := ∑2N−1
j=1 p2

j . 〈p〉 is the “average correlation” between two

points chosen at random from∆N and is of the orderN−D2, whereD2 is thecorrelation dimensionof f` defined
by D2 := limN→∞ − log 〈p〉/logN . (This definition is slightly different from the standard definition, e.g., see
[19], but it is obvious that they are equivalent.) We will see in Proposition 3.3 thatD = 2/` and〈p〉 ∼ N−2/`. By
definition,p2N is the measure at 1. From Proposition 2.1,p2N ∼ N−1/`. ThusNstop ∼ N1/`, hencePcollapse ∼
p2N · Nstop = O(1).

The following notation is needed to estimateStop(n). For 1≤ j ≤ n, define

Prob(n, k, j) := P {xij = xk|(xir )
n
r=1 is neither collapsing nor repetitive}. (3.3)

Notice that given two sequences that are neither repetitive nor collapsing if they contain the same set of points and
the order of these points is different, they have the same probability to be chosen. ThusProb(n, k, j) is independent
of j and therefore we can suppress the notation byProb(n, k).

Notice thatProb(n, k) is typically not equal topk due to the restriction that the firstn points are different from
each other. To illustrate how this deviation can happen, we consider a simple example in which a biased coin is
tossed at random. Suppose in a single experiment the head occurs with probability 0.9 and the tail occurs with
probability 0.1. If we toss this coin twice, then under the condition that both the head and the tail occur once, the
probability that the head occurs first is 0.5, which is far from 0.9. On the other hand, whenn is small compared
to N , choosingn points at random from∆N is unlikely to result in repetition, soProb(n, k)/pk is close to 1, as
shown in the next lemma.
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Lemma 3.1. Let N be sufficiently large thatp2N < 1/32.Givenθ ∈ (2p2N, 1/16), let Nθ = θ/〈p〉, then for all
n ≤ Nθ ,

Prob(n, k) < (1 + 2θ)pk. (3.4)

Proof. As before, we denote byi1 6= · · · 6= in if no pair of indices in{i1, . . . , in} are equal, and also we write
k 6= i1, . . . , in if k does not belong to the index set{i1, . . . , in}.

Let (xij )
n
j=1 be a sequence that is neither collapsing nor repetitive. Then

Prob(n, k) = P {i1 = k|i1 6= · · · 6= in 6= 2N} = P {i1 = k|i1 6= · · · 6= in 6= 2N}
P {i1 6= · · · 6= in 6= 2N}

= P {i1 = k}P {i1 6= · · · 6= in 6= 2N |i1 = k}
P {i1 6= · · · 6= in 6= 2N}

= pkP {i2 6= · · · 6= in 6= 2N |i1 = k}P {k 6= i2, i3, . . . , in|i2 6= · · · 6= in 6= 2N}
P {i2 6= · · · 6= in 6= 2N}P {i1 6= i2, i3, . . . , in|i2 6= · · · 6= in 6= 2N}

= pkP {k 6= i2, i3, . . . , in|i2 6= · · · 6= in 6= 2N}
P {i1 6= i2, i3, . . . , in, 2N |i2 6= · · · 6= in 6= 2N}

= pk − pk

∑n
s=2 P {is = k|i2 6= · · · 6= in 6= 2N}

1 − p2N −∑2N−1
j=1 [pj

∑n
s=2 P {is = j |i2 6= · · · 6= in}]

= pk − pk(n − 1)P rob(n − 1, k)

1 − p2N −∑2N−1
j=1 [pj (n − 1)P rob(n − 1, j)]

.

In particular,p(1, k) = pk/(1 − P2N) < (1 + 2θ)pk.
Assume, for induction, thatProb(n − 1, k) < (1 + 2θ)pk. Then

Prob(n, k)

pk

≤

1 − p2N −

2N−1∑
j=1

[(n − 1)p2
j (1 + 2θ)]




−1

= {1 − p2N − (1 + 2θ)(n − 1)〈p〉}−1

≤
{

1 − θ

2
− (1 + 2θ)θ

}−1

.

It can be easily seen that forθ ∈ (2p2N, 1/16), the last expression in the above is less than 1+2θ . Thus we complete
the proof. �

LetRep(n) be the probability that(xij )
n+1
j=1 is repetitive, given that the subsequence consisting of the firstn points

is neither repetitive nor collapsing. Then

Rep(n) =
2N−1∑
k=1

[n P rob(n, k)pk].

From (3.4),n ≤ Nθ implies

Rep(n) ≤ n〈p〉(1 + 2θ). (3.5)

Noticing thatProc(n) = Proc(n − 1) · (1 − Rep(n) − p2N), whereProc(n) is defined in (3.1), we obtain
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logProc(n) = log([1 − Rep(1) − p2N ] · · · [1 − Rep(n − 1) − p2N ]) ≥
n−1∑
i=1

log(1 − (1 + 2θ)〈p〉i − p2N),

from(3.5) ≥
n−1∑
i=1

{[−i〈p〉(1 + 2θ) − p2N ] − [i〈p〉(1 + 2θ) + p2N ]2} ≥ −(1 + 2θ)〈p〉n
2

2
− np2N. (3.6)

Let

Collapse(n) := P {(xij )
∞
j=1 is collapsing with collapsing timen + 1}. (3.7)

Then from Eq. (3.6), forn ≤ Nθ , we have

Collapse(n) = p2NP roc(n) ≥ p2Nexp

[
−(1 + 2θ)〈p〉n

2

2
− np2N

]
, (3.8)

from Eq. (3.6).
We now give results which allow us to estimatep2N and〈p〉 asymptotically asN → ∞.

Lemma 3.2.

lim
N→∞

p2N · (2N)1/` = α1`. (3.9)

Proof.

lim
N→∞

p2N · (2N)1/` = lim
N→∞

(
1

1 − p̃0

)∫ 1

1−1/2N

p(x) dx · (2N)1/`

= lim
N→∞

∫ 1

1−1/2N

σ1(1 − x)1/`−1dx(2N)1/` = σ1`,

where the second step follows from Eq. (2.1). �

In the following proposition, the dimension calculation is a consequence of Eq. (3.11), but Eq. (3.11) is also
needed in calculatingCollapse(n). The following constant is needed:

K :=
( ∞∑

i=1

k2
i

)1/2

, (3.10)

where

ki := `[(i + 1/2)1/` − (i − 1/2)1/`] = N1/`

(∫ xi+1/(2N)

xi−1/(2N)

(1 + x)−1+1/`dx

)
.

Proposition 3.3.
1. lim

N→∞
〈p〉N2/` = (α2

0 + α2
1)K2. (3.11)

2. D2 = 2/`. (3.12)

Proof. From Proposition 2.1, for fixedδ > 0, there exista, b ∈ (−1, 1) such that

(1 − δ)α0(1 + x)1/`−1 ≤ ρ(x) ≤ (1 + δ)α0(1 + x)1/`−1, for x < a, (3.13)

(1 − δ)α1(1 − x)1/`−1 ≤ ρ(x) ≤ (1 + δ)α1(1 − x)1/`−1, for x > b. (3.14)
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Writing I1 := ∑
−1<xi<ap̃

2
i , I2 := ∑

a≤xi≤bp̃
2
i , andI3 := ∑

b<xi<1p̃
2
i , so that

〈p〉 = [I1 + I2 + I3]

(
1

1 − p̃0

)2

.

Notice that limN→∞(1 − p̃−2) = 1. Therefore we obtain

lim
N→∞

〈p〉N2/` = lim
N→∞

(I1 + I2 + I3)N
2/`. (3.15)

In the following we estimate the quantitiesI1, I2 andI3 separately. Since

p̃2
i =

(∫ xi+1/2N

xi−1/2N

ρ(x) dx

)2

,

Eq. (3.13) yields

I1 ≤ (1 + δ)2α2
0

∑
−1<xi<a

[∫ xi+1/2N

xi−1/2N

(1 + x)1/`−1dx

]2

= (1 + δ)2α2
0

∑
0<i<(1+a)N

k2
i N

−2/`,

and

I1 ≥ (1 − δ)2α2
0

∑
0<i<(1+a)N

k2
i N

−2/`.

Similarly, Eq. (3.14) yields

I3 ≤ (1 + δ)2α2
1

∑
0<i<(1−b)N

k2
i N

−2/`.

and

I3 ≥ (1 − δ)2α2
1

∑
0<i<(1−b)N

k2
i N

−2/`.

Let M = maxa≤x≤bρ(x). ThenI2 ≤ M2/(2N). Notice that limN→∞I2N
2/` = 0. Combined with the above

estimates, Eq. (3.15) gives

(1 − δ)2(α2
0 + α2

1)

∞∑
i=1

k2
i ≤ liminf

N→∞
〈p〉N2/` ≤ limsup

N→∞
〈p〉N2/` ≤ (1 + δ)2(α2

0 + α2
1)

∞∑
i=1

k2
i .

Sinceδ can be chosen to be arbitrarily small, the leftmost expression in the above equals the rightmost expression,
so the four expressions are equal and therefore Eq. (3.11) holds. �

Remark. In [3], numerical experiments and heuristic estimates are given to argue that it appears that for chaotic
systems the average period is of orderε−D2/2, whereε is the “machine epsilon”, i.e., the smallest positive number
that can be represented by the computer when evaluating a function using fixed precision. In effect,ε = 1/N . If the
arguments in[3] hold for f`, then that means the average period of a numerical orbit is of orderε−1/`. Later we
will see that numerical experiments suggest that the average collapsing time is also approximatelyε−1/`.

Proof of Theorem 1.1. Forn > 0, letCollapse(n) be defined by (3.7). Define

PN(n) := P {(xij )
n+1
i=1 is collapsing}. (3.16)

Notice thatPcollapse = PN(2N − 1). Then forn ≤ Nθ , we have
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Fig. 1.Pcollapse as a function of̀ . The curve in this figure is the lower bound computed from (3.23). Numerical results obtained by using
different numerical precisions are also shown in this figure: ‘+’ – double precision; ‘o’ – single precision; ‘×’ – fixed precision 10−12.

PN(n) =
n∑

i=0

Collapse(i) ≥ p2N

n∑
i=0

exp

[
−(1 + 2θ)〈p〉 i

2

2
− ip2N

]
, from Eq. (3.8),

≥ p2N

∫ n

0
exp

[
−(1 + 2θ)〈p〉x

2

2
− xp2N

]
dx

≥ √
πL(θ)

[
erf

(
np2N

2L(θ)
+ L(θ)

)
− erf(L(θ))

]
exp(L(θ)2), (3.17)

and

liminf
N→∞

Pcollapse ≥ lim
θ→0

liminf
N→∞

√
πL(θ)

[
erf

(
Nθp2N

2L(θ)
+ L(θ)

)
− erf(L(θ))

]
exp(L(θ)2), (3.18)

where erf(x) := (2/
√

π)
∫ x

0 exp(−t2) dt , and

L(θ) := p2N√
2(1 + 2θ)〈p〉 . (3.19)

Multiplying the numerator and denominator by(2N)1/` and using Eqs. (3.9) and (3.11) yields

lim
N→∞

L(θ) = `K−12−1/2−1/`(1 + 2θ)−1/2

√
α2

1

α2
0 + α2

1

, (3.20)
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Fig. 2. The distribution of collapsing timeTc for double precision computation,` = 3, 4, 5, 6. The density is normalized byPcollapse.

and by substituting (2.3) into the above equation, we get

lim
N→∞

L(θ) = `K−12−1/2−1/`(1 + 2θ)−1/2[1 + ((2`)1/` − 1)−2]−1/2, (3.21)

whereK is given by Eq. (3.10).
Recall thatNθ := θ/〈p〉, for θ ∈ (2p2N, 1/16). Thus Eqs. (3.9) and (3.11) yield limN→∞Nθp2N = ∞. Hence

lim
N→∞

erf

(
Nθp2N

2L(θ)
+ L(θ)

)
= 1. (3.22)

Substituting Eqs. (3.21) and (3.22) into (3.18), we get

liminf
N→∞

Pcollapse ≥ √
πK ′[1 − erf(K ′)]exp(K ′)2 > 0, (3.23)

whereK ′ = limθ→0limN→∞L(θ); so Eq. (3.21) yields

K ′ = `K−12−1/2−1/`[1 + ((2`)1/` − 1)−2]−1/2,

whereK is given by (3.10). �
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4. Conclusion

We have not only proved that the collapsing effect does not vanish when arbitrarily high numerical precision is
employed, but also given a lower bound of the probability for which it happens (see Eq. (3.23)). In Fig. 1 we plot
the curve given by Eq. (3.23) along with the numerical results. Each numerical datum is obtained as follows. For
each`, we sample 10 000 pairs of( ¯̀, x) from (` − 0.01, ` + 0.01) × (−1, 1) with uniform distribution. For each
sample, we keep iterating the mapf ¯̀ with the initial conditionx until the numerical trajectory repeats. Then we
calculate the portion of trajectories that eventually map to−1. The deviation is clear since Eq. (3.23) only gives a
lower bound. Nonetheless, the theoretical curve reveals the fact thatPcollapse is already substantial for̀= 3 and it
predicts thatPcollapse increases as̀ increases and that liml→∞Pcollapse = 1.

Eq. (3.17) allows us to estimate the average collapsing time〈Tc〉 for the collapsing trajetories. Roughly speaking,
Tc ∼ 1/

√〈p〉. From Proposition 3.3, The collapsing time is related to the correlation dimension asTc ∼ ε−D2/2,
whereε is the “machine epsilon”, andD2 = 2/`. Fig. 2 shows the distribution ofTc. We use double precision in our
computations, soε ≈ 10−16. The peaks of these distributions agree with our prediction up to an order of magnitude.
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