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Abstract

In their numerical investigation of the family of one dimensional m#gs) = 1 — 2|x|¢, where¢ > 2, Diamond et al.
[P. Diamond et al., Physica D 86 (1999) 559-571] have observed the surprising numerical phenomenon that a large fraction
of initial conditions chosen at random eventually wind up-4t a repelling fixed point. This is a numerical artifact because
the continuous maps are chaotic and almost every (true) trajectory can be shown to be derisd]inThe goal of this
paper is to extend and resolve this obvious contradiction. We model the numerical simulation with a randomly selected map.
While they used 27 bit precision in computitfg we prove for our model that this numerical artifact persists for an arbitrary
high numerical prevision. The fraction of initial points eventually winding up Atremains bounded away from 0 for every
numerical precision. ©2000 Elsevier Science B.V. All rights reserved.

PACS:05.45.+b

Keywords:Collapsing; Natural measure; Schwarzian derivative; Fixed precision arithmetic

1. Introduction

Because of the prevalence of numerical calculations of dynamical systems, it is important to identify special situ-
ations in which numerical simulations yield strikingly incorrect results. Computer simulation of chaotic dynamical
systems can be very different from the real systems. Recently, a rather surprising numerical artifact was identified
by Diamond et al. in two nice papers [1,2]. For the family of maps

fix)=1-2x|*, xe[-1,1], £>2, (1.1)

fe is chaotic, as we will show in the next section. In particular, almost every trajectory is dense in the whole interval.
Diamond et al. numerically investigated trajectories of (1.1) and reported that for an initial point chosen at random
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in (=1, 1), the trajectory has a considerable probability of reaching the pdinNote that-1 is a repelling fixed
point, so the trajectory remains ail thereafter.

Indeed, numerically every trajectory ia-[L, 1] is eventually periodic, since there are only finitely many numbers
available to the computer. If a (hnumerical) trajectory reaches an unstable fixed point (whicimithis case), we say
the trajectonycollapsesNote that the numerical trajectory will stay-afl thereafter. Diamond et al. found that for
an initial point chosen at random {r-1, 1), the probability of collapse is roughly 70% féapproximately 3. This
probability fluctuates wildly ag varies, and 70% is an average fonear 3. They use a fixed point representation
of precisione = 2-27, Apparently, they computé, (x) accurately and then round to the nearest integer of the form
k - 2727, wherek is an integer. Hence 1 remains a numerical fixed point.

The aim of this paper is to present a computational model for which we can prove that this artifact persists even
if numerical precision is increased arbitrarily.

Indeed, there is a trivial example where collapsing occursTLs the tent map on [@] with slope 2. TherT is
clearly chaotic and preserves Lebesgue measure dh [On the other hand, if numbers have binary representations,
it is easy to see that every numerical trajectory will eventually become 0 (and will of course stay at 0). However,
for tent maps collapsing is unusual in the sense that it disappears when the slope is slightly less than 2; whereas for
fe, wheret > 2, the probability is positive.

For high precision calculations, the time to first repeat will be large, and it seems natural to assume that before a
numerical trajectory repeats, it has the same statistics as those of a typical true trajectory. This assumption leads us
to model a numerical simulation g§ by a mapping that is randomly selected from the collection of all mappings
defined on a finite set. Similar ideas have also been discussed in several other papers, see, e.g. [1-7].

In developing the model, we need definitions. Given a rigwe defined thdraction of the iterates of the orbit
(f"(x))72, lying in a setsS by

F(x,S) := lim #{fl(x)GS:lgifn}.

n— 00 n

Write N(r, S) := {x : dist(x, S) < r}. Thenatural measure generated by the mAjs defined by
nr(S) = |imOF(x, N, S))

for each closed se%, as long as alt except for a measure zero set gives the same answer.

In the next section we will prove thaf, ¢ > 2, the natural measure exists and is absolutely continuous with
respect to the Lebesgue measure, and that the support of the meastitell For the moment we assume the
existence of natural measure and start describing our modek hetthe natural measure.

A computer using fixed precision will have some numbeof points (equally spaced) from1 to+1. We will
investigate the set of maps on these points subject to the conditionthat fixed point and-1 maps to-1 and as
described below the maps have a probability distribution on them that is determined by the redltegartition
the interval -1, 1] with the uniform gridAy = {xo, x1, ... , x2n}, Wherex; = —1+k/N. Let p; be the measure
(with respect tqu) of the interval of length AN centered aty.

The “induced” probability distribution om y is defined as follows:

Pk = 1fkﬁ0, for 0 < k < 2N. (1.2)

Notice thatz,fglpk = 1. Hence Eq. (1.2) gives a probability distribution.
Let 7y ¢ be the collection o : Ay — Ay such thatl'(—1) = —1 and7 (+1) = —1. We choose a map
from Ty ¢ (¢ determines the probability distribution) at random according to the following:
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P{T(x;) =x;}=pj, for 0<i <2N and O< j < 2N. (1.3)

Eq. (1.3) gives a probability depending 6n
This model is motivated by fixed precision arithmetic. For floating point computation, the floating numbers are
denser at 0 than anywhere else, and this does not significantly affect computational results for this problem.

Theorem 1.1. Let¢ > 2. Letx be an initial point chosen randomly frory with uniform distribution, and letT"
be a mapping chosen randomly froffy , accordingly to Eq(1.3). Write Pjiapse for the probability that there
exists am such thatl” (x) = —1. ThenPyqpse depends only o and¢ and

liminf 'Pw”apse > 0.
N—o00

The distribution of initial points is not important as long as it is induced by a probability measure that is an equiv-
alent Lebesgue measure. Thus to simplify our proof of Theorem 1.1 we are able to consider the initial distribution
to be given by Eq. (1.2) instead.

When applied to numerical simulation, limigf, o Pcosiqpse Stands for a lower bound of the probability with
which an initial condition chosen at random eventually maps to the fixed pdinfTheorem 1.1 means that for
¢ > 2 this probability is bounded away from zero.

Diamond et al. also use randomly selected mappings in their analysis, but they use a different and simpler statistical
model (see also [8] for their recent discussion), which assumes the distributibg muniform except at 1, and the
weight at 1 is adjusted to yield the agreement betwggn,,s. obtained from theoretical derivation and numerical
simulation. The advantage of our model is that it is based on the actual properties of the invariant density (which
we establish here). Furthermore, we can estimateAgyy.,s. depends ot (Eq. (3.23)). In particular,

L Pl =248 ~ 842, (1.4)
2, Pl —o00) =1, (1.5)

wherePég}‘;jzse is our lower bound fofPqpse COMputed from Eq. (3.23). The quantiByqpse Can be used as

an a priori estimate of how much statistical information is distorted in numerical simulations.

2. Invariant measure

Despite all the numerical evidence that many chaotic systems have a natural measure, its existence can be
mathematically justified only for a few special cases [9-16]. Fortunately, Wher2 the mapf,; belongs to such
cases. The goal of this section is to verify the existence of the natural measure and analyze this measure quantitatively.
Indeed, we will prove the following proposition.

Proposition 2.1. For f, £ > 2,there exists a unique invariant probability measurehich is absolutely continuous
with respect to Lebesgue measure. The density for this measure is continous @r-1, 1) and bounded away
from 0. For each¢; the following limits exist:

a1 = lim p(x)(1— ), (2.1)
= lim px)(1+ x)e (2.2)
and they satisfy

ap = a1/((20)Y* - 1). (2.3)
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To prove Proposition 2.1, we first observe that its Schwarzian derivéfives negative, where

') 3 (fé”(x))z

fix)y 2\ fix) )

Next, sincefZZ(O) = —1, and—1 is an unstable fixed poinkf,")'(fe(c))| grows exponentially imn:. From the

following proposition,f; has a natural measugeandy is absolutely continuous with respect to Lebesgue measure.
Let p be its density.

Sfe(x) ==

Proposition 2.2(see [17], Theorem V 4.1)Let f : [—1, 1] — [—1, 1] be a unimoda(i.e. f has only one critical
point) C2 map with negative Schwarzian derivative and assume that the critical pofnt is of finite order¢ > 1,
i.e., assume that there are constantg, O, such that

O1lx — el L < |f'(0)] < Oglx — c|*7L.

Furthermore, assume that the growth-ratg @f")’'(f (¢))| is so fast that

o
DI (e < oo (2.4)
n=1
Thenf has a unique invariant probability measyrghat is absolutely continuous with respect to Lebesgue measure.
Furthermore, there exists a constagitsuch that

n(A) < GIAIYY,
for any measurable set C (—1, 1) where|A| is the Lebesgue measureof

Note thatf, satisfies Eq. (2.4) sinagf™)’(f¢(c)) grows exponentially as — oo. We need in addition to show
that the invariant density is continuous. To this end we first define a first return mapNote thatf, (x) has two
fixed points:—1 andz, where O< z < 1. For eachr € [—z, z] \ {0}, there exists, € N such thatf; (x) ¢ [z, z]
fori =1,...,ix —landf, (x) € [z, z]. DefineRy(x) := f;*(x). The domain ofR; (.., [z, z] \ {0}) can be
divided into maximal intervald;, 1 < j < oo, on which the return time (i.eiy) is a constant which is denoted by
k(j). The following proposition says th&, has a continuous invariant densityand forx € J, in addition,p (x)
is equal tor(x) multiplied by a constant.

Proposition 2.3(see [17], pp. 363—365)There exists amR,-invariant probability measure: which is absolutely
continuous with respect to Lebesgue measure.AlCej be its densitydefined only on/). Then the following
properties hold.

1. A(x) is Lipschitz continuous.

2. A(x) is uniformly bounded away from zero.

3. Forx € J, the fy-invariant densityp is given byp(x) = A(x)/I", wherel" := Z?‘;lk(j)m(Jj) < 00.

Proof of Proposition 2.1. From Proposition 2.3p(x) is Lipschitz continuous on. Let y > 0 and—y be the
inverse imagesfgl(x) for x € (=1, 1). The Perron—Frobenius operatbrapplied top yields

p(=y) p(y) p(=y)+ o)
0] = = . 2.5
DO =Tt TR Ao (5)
But p = @(p) sincep is invariant. Hence we have
p(=y)+p@») p(=y)+p()
_ 2.6
[f )] 20]y|t-1 (26)

px) =
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If x € [z,1), theny € J. (Recall that/ = [—z, z].) Notice thatp is continuous or/. Thus Eg. (2.6) implie®
is continuous at, i.e. we need to show that the limits pfat z from both sides, denoted by(z—) and p(z),
respectively, are equal, or in other words, we need to prove that

p(z=) =d[p(z-) + p(—z4)], (2.7)

whered :=1/|f;(z)| andp(—z4) denotes the right limit op at —z.

Let —w_1 be the unique point inf ~1(—z) N (—=1,0). For 1 < i < oo, let —w_(+1) be the unique point in
f~Y(~w_;) N (~1,0), and letz_+1) be the unique pointirf ~(w_;) N (=1, 0). For 2< i < oo, itis clear that
7z € J, fi(z—i) = —z, and the return time equals 2 612, z) and is constant on ea¢h_; 1), z—i). Applying
Eq. (2.6) repeatedly yields

o0

o pG-) p(=z.0)
pz-) =d*p(z-) +d%p(=24) + . - : (2.8)
Z Z 4 ;l( é+l)/(Z7i)| ;l( gl+l)/(_zfi)|

and

o P = p(=z)
C24) = ' + ; : 2.9
o ;I(fé)’(z_i)l ;ng)/(—z_,-n (2.9)

Since|(fi ™ (—z—o)l = 1Y o)l = 1/ (fl =) - (F) G-l = [(f1) (z=)1/d, Eq. (2.8) can be rewritten
as

= g S s
) =d?p(ao) +dp(—24) +d . * ' '
p(z-) p(z p(=z4) ;Kfé)/(Z—l)' ;Kfé)/(_Z—lN

Substituting (2.9) into the above equation, we get
p(z-) =d’p(z-) + d*p(—z4) +dp(—z).

Solving forp(z_) yields

_d
p(z-) = mp(—u),

which implies (2.7).
The continuity ofp on (—1, —z] can be proved as follows. For eagte [—w_1, —z], EQ. (2.6) yields

ox) + p(—x)
ol
We can solvep (x) from (2.10) and get

p(x) = |fi®)|p(fe(x)) — p(—x).

Since bothf, (x) and—x are contained in|z, 1), the above equation implies thais continuous at, and that the
limits of p at—z from both sides coincide. Therefopds continuous onfw_1, 1). Repeating previous arguments,
and noticing that lin, o — w—; = —1, we conclude that is continuous ori—1, 1).

In the following we prove that the limits in (2.1) and (2.2) exist and Eq. (2.3) holds. We first notice that Eq. (2.6)
implies that the limit in (2.1) exists, since

- 1-1/¢
a1 = lim PN +0G) @y[HT Ve = 27O
y=0  20]y|t 7

p(fe(x) = (2.10)
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To prove the limit in (2.2) exists it suffices to show thatc)(1 + x)1~1/¢ is bounded or{—1, —z], and that the
“limsup” and “liminf” coincide.

Givenx € (-1, —z], let y_1 := y, where as defined earlier> 0 and—y are the inverse images gffl(x). For
1<i < oo, lety_g11) be the unique point in”[l(—y_,-) N (0, 1). Thenfg (y—i) = x. Applying (2.6) repeatedly
yields

e
P = ;I(fé')’(yfi)l'

Let D = sup.,_10(»)(L — )Y~ Sincep is continuous on [01) and the limit in (2.1) existsD is a real
number. Also notice thaf, has negative Schwarzian derivative, so it has bounded distortion [17, Theorem IV 1.2]
on (—1, —z]. Thus there exists a constafit> 0 such that

L 1+ fi=y-) — (-1 i
I(fo) (=)' < <1_—yx_,> = < E_y_i may ) < E[(fp) (-l (2.11)
Thus
_ —  p(y-i) _ Zp(—) A=y )Y g \ T
WA+ 0TV =3 LU gy e : ( )
P+ = Y T = T G T
00 iy anl—1/e 0 _ 1-1/¢
- D{E|(fgi) (y-i)l} < DEYVIS | i) < iDE : -
Py [(fe) (=il = [(fO@IME-1
Hencep (x)(1 + x)}~1/* is bounded in—1, —z].
From Eg. (2.6), we have
limsupo (x)(1 + x)*~ ¢
x—>-1
_ _ \1-1/¢ _ 1-1/¢ _ 1-1/¢
_ Iimsup(p( y)+p(y))(3 2yY) :”msup(p( y)+p(y))(2ﬁ)7 d-y
y—1 Zzyl L y—1 Zﬁye L

= (20"t (Iimsupp(—y)(l — ey a1> = (20)~ V¢t (Iimsupp(x)(l + )4 a1> )

y—1 y—1

Solving for the “limsup” yields

limsu 1gptle- 2
x_)_lDP(X)( + x) 207 —1
Similarly the “liminf” in (2.2) is the same; hence the limit exists, and the relation (2.3) holds. |

Remark. Keller [18] (see alsd17, TheoremV 3.2]) has proved that for a unimodal map with one non-flat crit-

ical point (i.e., it is of finite orde)y and negative Schwarzian derivative, the existence of an absolutely continu-
ous probability measure implies that Lyapunov exponents are positive for almost all initial points. In this sense,
fe (£ > 2) is chaotic.
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3. Proof of main results

In this section we prove Theorem 1.1 after preliminary lemmas. We apply the methods introduced heuristically
by Grebogi et al. [3], but we use them for a rigorous argument to estifiate,s. quantitatively.

Indeed,P.onqpse Can be equivalently defined in terms of probabilities of sequences without reference to a space
of maps. For a sequenre = (x,-j)j.=1 of points inAy \ {—1}, let x;, denote the first term (if it exists) for which
eitherx;, equals an earlier;; orx;, = 1. In the latter case, we sayis collapsing ands is thecollapsing time
in the first case, we say is repetitive ands is therepeating timeThere are sequences that are neither collapsing
nor repetitive, but their length is at mosiv2— 1, since there are onlyR2 — 1 different points inAy \ {—1, 1}.
DefinePéollapse as the probability that an (infinite) sequence chosen at random (using the probabilities in (1.2)) is
collapsing, that isy;; = 1 occurs before the first repeat.

The definitionSPeosiapse andPéollapse are equivalent. Thisis because)&fj);%:1 isasequenceifxy, ..., xay-1}
such thatx;, # --- # x;,, i.e., no pair of indices ifiy, ... , i,} are equal, then the probability of choosing this
sequence is the same as the probability of obtaining this sequence as a trajectory of a randomly chosen map (using the
probabilities in (1.3)). Therefore, a collapsing seque(ag,eizl with collapsing time is chosen with a probability
same as that with which the orbﬁi:ti_l,)j:l of a mapT is chosen fronVy .

We first give a heuristic argument before proving Theorem 1.1 in detailr L:et(x,-_,.);?‘;l be a sequence chosen
at random. Since the probability of picking 1 is equaptay, Peonapse is roughly equal tg,y times the average
length of a maximal sequence that is neither collapsing nor repetitive. The chance of repetition is small for short

sequences and gets larger for longer sequences. Define
Proc(n) := P{(x;; ’}:1 hasno1's and norepeats (3.2)
Stop(n) :==1— Proc(n). (3.2)

Then the average length of maximal sequences mentioned earlier is approximately equal to the ¢ufgff of
whereStop(Ny:p) is NOt negligible. Indeed, we will see in Eq. (3.6) that this cutoff is approximately equal to the
minimum of p, and(p) ~* and(p)~%/2, where(p) := Y-5¥p2. (p) is the “average correlation” between two
points chosen at random fromy and is of the ordeN —P2, whereD; is thecorrelation dimensionf £, defined
by Dy = limy_.~ — l0og(p)/log N. (This definition is slightly different from the standard definition, e.g., see
[19], but it is obvious that they are equivalent.) We will see in Proposition 3.3hat2/¢ and(p) ~ N~%/¢. By
definition, poy is the measure at 1. From Proposition 202y ~ N~Y¢. Thus Ny, ~ N, hencePeoiapse ~
DP2N - Nsiop = O(D).

The following notation is needed to estim&®p(n). For 1< j < n, define

Prob(n, k, j) == P{x;; = xi|(x;,)r_q isneither collapsing nor repetitiye (3.3)

Notice that given two sequences that are neither repetitive nor collapsing if they contain the same set of points and
the order of these points is different, they have the same probability to be chose®digs, k, j) is independent
of j and therefore we can suppress the notatio®byb (n, k).

Notice thatProb(n, k) is typically not equal tg; due to the restriction that the firstpoints are different from
each other. To illustrate how this deviation can happen, we consider a simple example in which a biased coin is
tossed at random. Suppose in a single experiment the head occurs with probability 0.9 and the tail occurs with
probability 0.1. If we toss this coin twice, then under the condition that both the head and the tail occur once, the
probability that the head occurs first is 0.5, which is far from 0.9. On the other hand,misesmall compared
to N, choosing: points at random fromn y is unlikely to result in repetition, s&@rob(n, k)/ px is close to 1, as
shown in the next lemma.
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Lemma 3.1. Let N be sufficiently large thapoy < 1/32.Givend € (2poy, 1/16), let Ny = 6/(p), then for all
n < Ny,

Prob(n, k) < (1+ 20) px. (3.4)
Proof. As before, we denote bif # --- # i, if no pair of indices in{i4, ... ,i,} are equal, and also we write

k #i1,...,Ii, if k does not belong to the index dét, ... , i,}.
Let (x,rj)sle be a sequence that is neither collapsing nor repetitive. Then

Pliy = kli1 # -+ # in # 2N}

Pliv # - # iy # 2N}
_Pla=KPlin#---#in #2Nli1 =k}

Pliv # -+ # iy # 2N}
_ PPl oo #in # 2Nlin = KYP{k # i ia L inliz # -+ # in # 2N}
Plig # -+ # iy # 2N}Plir # i, 13, ... ,inli2 # - -+ # in # 2N}

_ Pk Fiz i3, ... inliz # - Fin #F 2N}
C P{it# 02,03, ... ,in, 2N|io # - -+ # i, # 2N}
_ Pk DY s Plis=klig# - # in # 2N}

1= pov — 278 py Yiep Plis = jliz # -+ # in)]
_ pr — px(n — D) Prob(n — 1, k)

1— pay — X3 pj(n = HProb(n — 1, )]’

In particular,p(1, k) = pr/(1 — Pan) < (1 + 20) py.
Assume, for induction, thalrob(n — 1, k) < (1+ 20) px. Then

Prob(n, k)= P{iy = kliv % - -+ # in # 2N} =

Prob(n, k)

-1
2N-1
= {1— pav — Y [(n = HpFL+ 29)1] ={1—pav — (1 +20)(n — D(p)} "

j=1
0 -1
5{1—5—(1+29)9} .
It can be easily seen that fére (2poy, 1/16), the last expression in the above is less thar24. Thus we complete
the proof. O

Let Rep(n) be the probability thaaxij);?j is repetitive, given that the subsequence consisting of the: firgints
is neither repetitive nor collapsing. Then

2N-1

Rep(n) = Z [n Prob(n, k) pi].
k=1

From (3.4)n < Ny implies
Rep(n) < n(p)(1+ 20). (3.5)

Noticing thatProc(n) = Proc(n — 1) - (1 — Rep(n) — p2n), WhereProc(n) is defined in (3.1), we obtain
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n—1

log Proc(n) = log([1 — Rep(1) — pay]---[1 — Rep(n — 1) — pan]) = D log(L — (L4 20)(p)i — paw),
i=1

n—1 2
from3.5) = > {[—i(p)(L+ 20) — pan] — [i (p) (L + 260) + pan]?} = —(1+ 29><p>”7 —npan.  (3.6)
i=1
Let
Collapse(n) := P{(xij)?il is collapsing with collapsing time: + 1}. (3.7)

Then from Eq. (3.6), for < Ny, we have

2
Collapse(n) = pay Proc(n) > P2N9Xp[—(1+ 29)(1?)% - npzzv} , (3.8)

from Eq. (3.6).
We now give results which allow us to estimatgy and(p) asymptotically agv — oo.

Lemma 3.2.

lim pay - @N)YE = ayt. (3.9)
N—o0

Proof.

. _ 1 1
lim poy - @N)Y¢ = lim < _ )/ p(x)dx - 2N)Y*
N—00 N—oo\1—=po/ Ji-1/2n

1
= lim f o1(1— )Y dxy 2NV = o1,
N—ooJ1-1/2N

where the second step follows from Eq. (2.1). O

In the following proposition, the dimension calculation is a consequence of Eq. (3.11), but Eq. (3.11) is also
needed in calculatingollapse(n). The following constant is needed:

00 1/2
K = <Z kf) , (3.10)
i=1

where

xi+1/(2N)

ki = €[ +1/2Y" — (i —1/2)Y¢] = NV/* (/ 1+ x)_1+l/edx) .

i—1/(2N)

Proposition 3.3.
1. Jim (PYN? = (@5 + o) K. (3.11)
—00
2. Dy = 2/4. (3.12)
Proof. From Proposition 2.1, for fixe8l > 0, there existi, b € (—1, 1) such that
(1—8aol+ 0V < p(x) < A+ O+ x)Y*L, for x <a, (3.13)

1-—8a1(1—x)Y < pix) < A+ &ar (L — )Y L, for x > b. (3.14)
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Writing I := Y"1 _ % I2:=Y 4o <pPt» andlz =Y, _. 1 j?, so that

1 \2
(p)=[I1+ D+ 3] (1——130> )

Notice that limy_ o (1 — p~2) = 1. Therefore we obtain
lim (p)N%¢ = lim (I1+ I + Is)N?%/*. (3.15)
N—oo N—o0

In the following we estimate the quantitiég 7> and /3 separately. Since

Xi+1/2N 2
~2
pi = / p(x)dx ] ,
xi—1/2N

Eq. (3.13) yields

2
x,-+1/2N

h<+8%4 Y. [/ (1+x)1/£_1dx:| =1+0%F Y kN
xi—1/2N O<i<(1+a)N

—1l<xj<a
and
h=@1-8%G > KN
O<i<(14+a)N
Similarly, Eq. (3.14) yields
I3 < (14 6)%? Z k2N2E,
O<i<(1-b)N
and
I3 > (1-6)%? Z k2N2E,
O<i<(1-b)N

Let M = max,<,<pp(x). Thenl, < M?/(2N). Notice that limy_,.,/2N%* = 0. Combined with the above
estimates, Eq. (3.15) gives

o o0
(1= 8)*@f +ad) Yk <liminf (p)N?/* < Ii}\r]nsup(p)Nz/Z < L +82@d+ad)Y k2.
i=1 - i=1

Sinces can be chosen to be arbitrarily small, the leftmost expression in the above equals the rightmost expression,
so the four expressions are equal and therefore Eq. (3.11) holds. |

Remark. In [3], numerical experiments and heuristic estimates are given to argue that it appears that for chaotic
systems the average period is of orde’2/2, wheree is the “machine epsilon”, i.e., the smallest positive number
that can be represented by the computer when evaluating a function using fixed precision. la effé¢y. If the
arguments ir{3] hold for f;, then that means the average period of a numerical orbit is of o¢edéft. Later we

will see that numerical experiments suggest that the average collapsing time is also approximately

Proof of Theorem 1.1. Forn > 0, letCollapse(n) be defined by (3.7). Define
Pn(n) = P{(x;)!] iscollapsing. (3.16)

Notice thatPeapse = Py (2N — 1). Then forn < Ny, we have
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Fig. 1. Peotiapse as a function oft. The curve in this figure is the lower bound computed from (3.23). Numerical results obtained by using
different numerical precisions are also shown in this figuré: double precision; ‘0’ — single precisionx’ — fixed precision 1612,

n n .2
Pym) = [Z:; Collapse(i) > pan ZZZ; exp[—(l + 29)(p)l§ - ipzzv] , fromEqg (3.8),
n x2
> PzN/c; exp[—(1+ 29)(P>? — xPzN] dx
> JTL(©0) [erf Gﬁg) + L(e)) — erf(L(@))i| exp(L(0)2), (3.17)
and
. L No p2n 2
lmint Peotrapse 2 lim liminf /L) [erf (T(G) + L(@)) — erf(L(e))] exp(L(6)2), (3.18)

where erfx) := (2//m) [y exp(—t?) dt, and

P2N

V2@ +20){(p)
Multiplying the numerator and denominator (8N)¥/¢ and using Egs. (3.9) and (3.11) yields

2
lim L) = ek 27214 20712 | T (3.20)
N—o0 ao +al

L(O) = (3.19)
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Fig. 2. The distribution of collapsing tim& for double precision computation,= 3, 4, 5, 6. The density is normalized ¥ o//apse -

and by substituting (2.3) into the above equation, we get

Jim L©) = (K127 Y2710 1 4 20) V21 4 (20)YF — 1)727 Y2, (3.21)
—00

whereK is given by Eq. (3.10).
Recall thatvy := 6/(p), for 6 € (2p2n,1/16). Thus Egs. (3.9) and (3.11) yield lin, o Ng ponv = oo. Hence

, No pan _
Nlinooerf (T(@) + L(@)) =1 (3.22)

Substituting Egs. (3.21) and (3.22) into (3.18), we get
I}ivminf Peottapse = NTK'[1 — erf(K")]lexp(K")? > 0, (3.23)
—00
whereK’ = limg_olimy_ oo L(9); so Eq. (3.21) yields

whereK is given by (3.10). |
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4., Conclusion

We have not only proved that the collapsing effect does not vanish when arbitrarily high numerical precision is
employed, but also given a lower bound of the probability for which it happens (see Eg. (3.23)). In Fig. 1 we plot
the curve given by Eq. (3.23) along with the numerical results. Each numerical datum is obtained as follows. For
each¢, we sample 10000 pairs ©of, x) from (¢ — 0.01, £ + 0.01) x (—1, 1) with uniform distribution. For each
sample, we keep iterating the mgp with the initial conditionx until the numerical trajectory repeats. Then we
calculate the portion of trajectories that eventually map 10 The deviation is clear since Eq. (3.23) only gives a
lower bound. Nonetheless, the theoretical curve reveals the fad®thal ;. is already substantial far= 3 and it
predicts thatP..yqpse iNCreases aéincreases and that lim oo Peoiiapse = 1.

Eq. (3.17) allows us to estimate the average collapsing ¢ifgifor the collapsing trajetories. Roughly speaking,

T. ~ 1/4/(p). From Proposition 3.3, The collapsing time is related to the correlation dimensifin-as —P2/2,
wheree is the “machine epsilon”, anB, = 2/¢. Fig. 2 shows the distribution @t.. We use double precision in our
computations, se & 1016, The peaks of these distributions agree with our prediction up to an order of magnitude.

Acknowledgements

We thank Leny Nusse for helpful comments. This research was supported by the National Science Foundation
and Department of Energy.

References

[1] P. Diamond, P. Kloeden, A Pokrovskii, A. Vladimirov, Collapsing effects in numerical simulation of a class of chaotic dynamical systems
and random mappings with a single attacting centre, Physica D 86 (1995) 559-571.
[2] P. Diamond, P. Kloeden, A. Pokrovskii, M. Suzuki, Statistical properties of discretizations of a class of chaotic dynamical systems,
Computers Math. Appl. 31(11) (1996) 83—-95.
[3] C. Grebogi, E. Ott, J.A. Yorke, Roundoff-induced periodicity and the correlation dimension of chaostic attactors, Phys. Rev. A 34 (1988)
3688-3692.
[4] A. Boyarsky, P. Géra, Why computers like Lebesgue measure?, Comput. Math. Appl. 16(4) (1988) 321-329.
[5] P.-M. Binder, Limit cycles in a quadratic discrete iteration, Physica D 57(1-2) (1992) 31-38.
[6] Y.D. Burtin, On a simple formula for random mappings and its applications, J. Appl. Probab. 17 (1980) 403—-414.
[7] B. Harris, Ann. Math. Statist. 31 (1960) 1045.
[8] P. Diamond, P.E. Kloeden, V.S. Kozyakin, A.V. Pokrovskii, A model for roundoff and collapse in computation of chaotic dynamical
systemem, Math. Comput. Simul. 44 (1997) 163-185.
[9] A. Lasota, J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. AMS 186 (1973) 481-488.
[10] R. Bowen, Invariant measures for Markov maps of the interval, Commun. Math. Phys. 69 (1979) 1-17.
[11] P. Bugiel, A note on invariant measure for Markov maps of an interval, Z. Wahrsch Verw. Geb. 70(3) (1985) 345-349.
[12] P. Bugiel, Correction and addendum to: A note on invariant measure for Markov maps of an interval, Probab. Th. Rel. Fields 76(2) (1987)
255-256.
[13] P. Collet, J.-P. Eckmann, Positive Lyapunov exponents and absolutely continuity for maps of the interval, Ergod. Theory Dyn. Systems 3
(1983) 13-46.
[14] M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Publ. Math. IHES 53 (1981) 17-51.
[15] S. van Strien, Hyperbolicity and invariant measures for ger@fahterval maps satisfying the Misiurewicz condition, Commun. Math.
Phys. 128 (1990) 437-496.
[16] T. Nowicki, S. van Strien, Invariant mesures exist under a summable condition for unimodel maps, Invent. Math. 105 (1991) 123-196.
[17] W. de Melo, S. van Strien, One-dimensional Dynamics, Springer, Berlin, 1993.
[18] G. Keller, Exponents, attractors and Hopf decompositions for interval maps, Ergod. Theory Dyn. Systems 10 (1990) 717-744.
[19] E. Ott, Chaos in Dynamical Systems, Cambridge University Press, Cambridge, 1993, p. 90.



